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We develop a theoretical framework that shows how mesen- 
cephalic dopamine systems could distribute to their targets a 
signal that represents information about future expectations. In 
particular, we show how activity in the cerebral cortex can 
make predictions about future receipt of reward and how fluc- 
tuations in the activity levels of neurons in diffuse dopamine 
systems above and below baseline levels would represent 
errors in these predictions that are delivered to cortical and 
subcottical targets. We present a model for how such errors 
could be constructed in a real brain that is consistent with 

physiological results for a subset of dopaminergic neurons 
located in the ventral tegmental area and surrounding dopa- 
minergic neurons. The theory also makes testable predictions 
about human choice behavior on a simple decision-making 
task. Furthermore, we show that, through a simple influence on 
synaptic plasticity, fluctuations in dopamine release can act to 
change the predictions in an appropriate manner. 
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In mammals, mesencephalic dopamine neurons participate in a 
number of important cognitive and physiological functions includ- 
ing motivational processes (Wise, 1982; Fibiger and Phillips, 1986; 
Koob and Bloom, 1988) reward processing (Wise, 1982) working 
memory (Sawaguchi and Goldman-Rakic, 1991) and conditioned 
behavior (Schultz, 1992). It is also well known that extreme motor 
deficits correlate with the loss of midbrain dopamine neurons; 
however, activity in the substantia nigra and surrounding dopa- 
mine nuclei, i.e., areas AS, A9, AlO, does not show any systematic 
relationship with the metrics of various kinds of movements 
(Delong et al., 1983; Freeman and Bunney, 1987). 

Physiological recordings from alert monkeys have shown that 
midbrain dopamine neurons respond to food and fluid rewards, 
novel stimuli, conditioned stimuli, and stimuli eliciting behavioral 
reaction, e.g., eye or arm movements to a target (Romo and 
Schultz, 1990; Schultz and Romo, 1990; Ljungberg et al., 1992; 
Schultz, 1992; Schultz et al., 1993). Among a number of findings, 
these workers have shown that transient responses in these dopa- 
mine neurons transfer among significant stimuli during learning. 
For example, in a naive monkey learning a behavioral task, a 
significant fraction of these dopamine neurons increase their 
firing rate to unexpected reward delivery (food or fluid). In these 
tasks, some sensory stimulus (e.g., a light or sound) is activated so 
that it consistently predicts the delivery of the reward. After the 
task has been learned, few cells respond to the delivery of reward 
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and more cells respond to the onset of the stimulus, which is the 
predictive sensory cue (see Figs. 1, 2). More important, in these 
and similar tasks, activity levels in these neurons are sensitive to 
the precise time at which the reward is delivered after the onset of 
the predictive sensory cue. 

The capacity of these dopamine neurons to represent such 
predictive temporal relationships and their well described role in 
reward processing suggest that mesolimbic and mesocortical do- 
pamine projections may carry information related to expectations 
of future rewarding events. In this paper, we present a brief 
summary of the physiological data and a theory showing how 
dopamine neuron output could, in part, deliver information about 
predictions to their targets in two distinct contexts: (1) during 
learning, and (2) during ongoing behavioral choice. Under this 
theory, stimulus-stimulus learning and stimulus-reward learning 
become different aspects of the same general learning principle. 
The theory also suggests how information about future events can 
be represented in ways more subtle than tonic firing during delay 
periods. 

First, we describe the physiological and behavioral data that 
require explanation. Second, we develop the theory, show its 
equivalence to other algorithms that have been used for optimal 
control, and demonstrate how and why it accounts for dopamine 
neuron output during learning tasks. Third, using the theory, we 
generate predictions of human choice behavior in a simple 
decision-making task involving a card choice experiment. 

DOPAMINERGIC ACTIVITY 
In a series of experiments in alert primates, Schultz and colleagues 
have shown how neurons in dopaminergic nuclei fire in response 
to sensory stimuli and the delivery of reward (Romo and Schultz, 
1990; Schultz and Romo, 1990; Ljungberg et al., 1992; Schultz et 
al., 1993). These neurons provide dopaminergic input to wide- 
spread targets including various limbic structures and the prefron- 
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tal cortex (Oades and Halliday, 1987). One of these nuclei, the 
ventral tegmental area (VTA), and one of its afferent pathways, 
the medial forebrain ascending bundle, are also well known self- 
stimulation sites (Wise and Bozarth, 1984). 

Object-specific dopamine neuron responses unrelated 
to movement parameters 
Figure L&C, reproduced from Romo and Schultz (1990), shows 
the responses of mesencephalic dopamine neurons in two condi- 
tions: (1) self-initiated arm movements into a covered, food box 
without triggering stimuli, and (2) arm movements into the food 
box triggered by the rapid opening of the door of the box. In the 
latter condition, the door opening was either visible and audible 
or just audible. The animals were first trained on the trigger 
stimulus, i.e., while the animal rested its hand on a touch-sensitive 
lever, the food box door opened, the animal reached into the box, 

MOVEMENT ONSET 

Figure I. Object specific responses of 
dopamine neurons: self-initiated and 
triggered movements. Animal is trained 
to reach into a visually occluded food box 
in response to the sight or sight and 
sound of food box door opening. A food 
morsel was present in the box and was 
connected to a touch-sensitive wire in 
some test conditions. A-C show re- 
sponses in 3 dopamine neurons for self- 
initiated movements: perievent histo- 
grams are shown at the fur right, raster 
plots of individual trials in the middle, 
and illustration of test conditions on the 
fur left. Transient increases in firing rate 
occurred only after touching food and 
not during arm movement, exploration 
of empty food box, or touching of bare 
wire. A, Food morsel touch versus search 
of empty box (trials aligned to entry into 
box). B, Same as A except food stuck to 
end of touch-sensitive wire versus only 
wire. C, Same as B. Depression in activity 
occurs after wire touch. D, Response of 
dopamine neuron to food touch. Move- 
ment self-initiated. E, Response of dopa- 
mine neuron to door opening with no 
response to food touch. Movement trig- 
gered by door opening. In D and E, the 
plots have been aligned to movement 
onset. (A-E reproduced with permission 
from Romo and Schultz, 1990.) 

grabbed a piece of apple, and ate it. The piece of apple was stuck 
to the end of a touch-sensitive wire. After this task had been 
learned, the self-initiated movement task was undertaken. The 
recordings shown in Figure 1 are from three dopamine neurons 
contralateral to the arm used in the task. These and other control 
experiments from this paper show that under the conditions of 
this experiment (1) these dopamine neurons give a transient 
response if a food morsel is felt, (2) arm movement alone does not 
inhibit or activate the subsequent firing of the dopamine neurons, 
and (3) simply touching an object (the bare wire) is not sufficient 
to yield the transient increase in firing. Ipsilateral dopamine 
neurons yielded the same results. Over 80% of the neurons 
recorded showed this qualitative behavior. 

The responses change completely if a stimulus consistently 
precedes (triggers) reaching into the food box. After learning, 
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when movement of the arm to the food box was triggered by a 
sensory stimulus (door opening as described above), 77% of the 
dopamine neurons gave a burst after door opening and gave no 
response to the touch of food in the box. This is shown in Figure 
l,D and E, also reproduced from Romo and Schultz (1990). 

In a series of related tasks with the same monkeys, Schultz and 
Romo (1990) showed that monkeys react to door opening with 
target directed saccades. The response of the dopamine neurons 
was specific to the multimodal sensory cues associated with door 
opening because dopamine neurons also responded to door open- 
ing during the absence of eye movements (eye already on target 
when door opened). Moreover, sensory cues associated with door 
opening did not cause dopamine neurons to fire outside the 
context of the behavioral task. 

Dopamine neuron access to temporal information 
Reaction-time task 
In Ljungberg et al. (1992), a light would come on signaling that 
the monkey should move its hand from a resting key to a lever. A 
reward consisting of a mechanically delivered drop of fruit juice 
would be delivered 500 msec after pushing the lever. During early 
learning trials, there was little extra firing in the dopamine neu- 
rons after the light came on but, when juice was given to the 
monkey, dopamine cells transiently increased their firing (Ljung- 
berg et al., 1992). After the animal had learned this reaction-time 
task, the onset of the light caused increased dopamine activity; 
however, the delivery of the juice no longer caused significant 
change in firing. Similar to the above results, the transient re- 
sponses of the dopamine neurons transferred from reward deliv- 
ery to light onset. 
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Spatial-choice tasks 
Monkeys trained on the reaction-time task described above were 
subsequently given three tasks in which one of two levers was 
depressed to obtain a juice reward (spatial choice task in Schultz 
et al., 1993) (Fig. 2). Each lever was located underneath an 
instruction light that would indicate which lever to depress. The 
delivery of the reward followed a correct lever press by 500 msec 
so that dopamine neuron responses to lever touch could be 
distinguished from responses to reward delivery. Dopamine neu- 
ron responses for the three tasks are shown in Figure 2. As 
explained in the legend, the difference between separate tasks was 
the temporal consistency between the instruction and trigger 
lights. As with the reaction-time task (Ljungberg et al., 1992) and 
the triggered task above (Romo and Schultz, 1990; Schultz and 
Romo, 1990), dopamine neuron responses transferred from re- 
ward delivery to sensory cues that predicted reward. 

Instruction 
t m-t 

Trigger 

Figure 2. Spatial choice tasks (after learning). The animal sits with hand 
resting on a resting key and views two levers (medial and lateral) located 
underneath two green instruction lights. These lights indicate which lever 
is to be pressed once a centrally located trigger light is illuminated. Three 
separate tasks were learned. The main difference among the tasks was the 
temporal relationship of instruction light and trigger light illumination. 
The three tasks were called spatial choice task (A ), instructed spatial task 
(B), and spatial delayed response task (C). This figure, reproduced from 
Schultz et al. (1993), shows the responses of 3 dopamine neurons during 
task performance (after training). A, Spatial choice task: the instruction 
and trigger lights were illuminated together; the animal released a resting 
key and pressed the lever indicated by the instruction light. B, Instructed 
spatial task: the instruction light came on and stayed on until the trigger 
light came on exactly 1 set later. C, Spatial delayed response task: the 
instruction light came on for 1 set and went out. This was followed by the 
illumination of the trigger light with a delay randomly varying between 1.5 
and 3.5 set (indicated by broken lines). In all tasks, lights were extinguished 
after lever touch or after 1 set if no movement occurred. 0.5 set after a 
correct lever press, reward (mechanically delivered juice) was delivered. 
The three panels show cumulative histograms with underlying raster plot 
of individual trials. The onset of arm movement is indicated by a horizontal 
line, and horizontal eye movements are indicated by overlying truces. Each 
panel shows data for 1 neuron. The vertical scale is 20 impulses/bin 
(indicated in A). Reproduced from Schultz et al. (1993) with permission 
from The Journal of Neuroscience. 

These experiments (Schultz et al., 1993) show that the dopa- 
mine neurons have access to the expected time of reward delivery. 
Figure 3 shows the response of a single dopamine neuron during 
the delayed response task. The response of this single neuron is 
shown in the presence and absence of reward delivery. These 
results were obtained while the animal was still learning the task. 
When no reward was delivered for an incorrect response, only a 
depression in firing rate occurred at the time that the reward 
would have been delivered. 

These results of Schultz and colleagues illustrate four important 
points about the output of midbrain dopamine neurons. (1) The 
activities of these neurons do not code simply for the time and 
magnitude of reward delivery. (2) Representations of both sen- 
sory stimuli (lights, tones) and rewarding stimuli (juice) have 
access to driving the output of dopamine neurons. (3) The drive 
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Figure 3. Timing information available at 
the level of donamine neurons. Transient 
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from both sensory and reward representations to dopamine neu- 
rons is modifiable. (4) Some of these neurons have access to a 
representation of the expected time of reward delivery. 

These data also show that simply being a predictor of reward is 
not sufficient for dopamine neuron responses to transfer. After 
training, as shown in Figure 2, the dopamine neuron response 
does not occur to the trigger light in the instructed spatial task, 
whereas it does occur to the trigger light in the spatial delayed 
response task. One difference between these tasks is that the 
trigger occurs at a consistent fixed delay in the instructed spatial 
task and at a randomly variable delay in the delayed response task 
(Fig. 2C). 

Taken together, these data appear to present a number of 
complicated possibilities for what the output of these neurons 
represents and the dependence of such a representation on be- 
havioral context. Below we present a framework for understand- 
ing these results in which sensory-sensory and sensory-reward 
prediction is subject to the same general learning principle. 

THEORY 

Prediction 
One way for an animal to learn to make predictions is for it to have 
a system that reports on its current best guess, and to have learning 
be contingent on errors in this prediction. This is the underlying 
mechanism behind essentially all adaptation rules in engineering 
(Kalman, 1960; Widrow and Stearns, 1985) and some learning rules 
in psychology (Rescorla and Wagner, 1972; Dickinson, 1980). 

Informational and structural requirements of a ‘fprediction 
error” signal in the brain 
The construction, delivery, and use of an error signal related to 
predictions about future stimuli would require the following: (1) 
access to a representation of the phenomenon to be predicted 
such as the amount of reward or food; (2) access to the current 
predictions so that they can be compared with the phenomenon to 
be predicted; (3) capacity to influence plasticity (directly or indi- 
rectly) in structures responsible for constructing the predictions; 
and (4) sufficiently wide broadcast of the error signal so that 
stimuli in different modalities can be used to make and respond to 
the predictions. These general requirements are met by a number 
of diffusely projecting systems, and we now consider how these 
systems could be involved in the construction and use of signals 
carrying information about predictions. 

Predictive Hebbian learning: making and adapting 
predictions using diffuse projections 
The proposed model for making, storing, and using predictions 
through diffuse ascending systems is summarized in Figure 4 

(no reward) i0 impulses/bin. Reproduced from Schultz 
et al. (1993) with permission from The 
Journal of Neuroscience. 

(Quartz et al., 1992; Montague et al., 1993, 1995; Montague and 
Sejnowski, 1994; Montague, 1996). 

Neuron P is a placeholder representing a small number of 
dopamine neurons that receive highly convergent input from both 
cortical representations x(i t) and inputs carrying information 
about rewarding and/or salient events in the world and within the 
organism r(t), where i indexes cortical domains and t indexes time. 
Each cortical domain i is associated with weights w(i, t) that 
characterize the strength of its influence on P at time t after a its 
onset. The output of P is widely divergent. The input from the 
cortex is shown as indirect-first synapsing in an intermediate 
layer. This is to emphasize that weight changes could take place 
anywhere along within the cortex or along the multiple pathways 
from the cortex to P, possibly including the amygdala. 

The connections onto P are highly convergent. Neuron P col- 
lects this highly convergent input from cortical representations in 
the form: 

where v(i, t) is some representation of a temporal derivative of 
the net excitatory input to cortical domain i at time t and V(i, t) = 

x(i, t)w(i, t). We use V(t) = Xi V(i t) - V(i t - 1). P also receives 
input from representations of salient events in the world and 
within the organism through a signal labeled r(t). The output of P 
[S(t)] is taken as a sum of its net input and some basal activity b(t): 

S(t) = r(t) + v(t) + b(t). (2) 

For simplicity, we let b(t) = 0, keeping in mind that the sign 
carried by S(t) represents increases [S(t) > 0] and decreases [s(t) 
< 0] in the net excitatory drive to P about b(t). I f  we let V(t) = Zj 
V(i, t), the ongoing output of P [S(t)] can be expressed as: 

S(t) = r(t) + v(t) - v(t - 1). (3) 

Weight changes are specified according to the Hebbian correlation 
of the prediction error S(t) (broadcast output of P) and the previous 
presynaptic activity (Rescorla and Wagner, 1972; Sutton and Barto, 
1981, 1987, 1990; Klopf, 1982; Widrow and Stearns, 1985): 

w(i, t - l),,, = w(i, t - l& + vx(i, t - l)S(t), (4) 

where x(i t - 1) represents presynaptic activity at connection i 
and time t - 1, n is a learning rate, and w(i, t - l)prev is the 
previous value of the weight representing timestep t - 1. As 
shown in Figure 4, this model has a direct biological interpretation 
in terms of diffuse dopaminergic systems; however, this formula- 
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The occurrence of a sensory cue does not just predict that that 
reward will be delivered at some time in the future, it is known to 
specify when the reward is expected as well (Gallistel, 1990). This 
means that animals must have a representation of how long it has 
been since a sensory cue (like the light) was observed, and this 
information must be available at the level of the P. 
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Figure 4. Making and using scalar predictions through convergence and 
divergence. A, Modality i and Modality j represent cortical regions. Neuron 
P collects highly convergent input from these cortical representations in 
the form Ci v(r, t), where v(i, t) is some representation of a temporal 
derivative of the net excitatory input to region i in the cortex. As indicated 
by the convergence through an intermediate region (neuron D), such 
temporal derivatives (transient responses) could be constructed at any 
point on the path from the cortex to the subcortical nucleus. We use V(t) 
- V(t - 1) for v’(& t); however, other representations of a temporal 
derivative would suffice. The high degree of afferent convergence and 
efferent divergence permits P to output only a scalar value. P also receives 
input from representations of salient events in the world and within the 
organism through a signal labeled r(t). This arrangement permits the 
linear output of P, s(t) = r(t) + V(t) - V(t - l), to act as aprediction error 
of future reward and expectations of reward (see text). Note that s(t) is a 
signed quantity. We view this feature simply as increases and decreases of 
the output of P activity about some basal rate of firing that results in 
attendant increases and decreases in neuromodulator delivery about some 
ambient level. B, Representation of sensory stimuli through time. Illus- 
tration of serial compound stimulus described in the text. The onset of a 
sensory cue, say a green light, elicits multiple representations of the green 
light for a number of succeeding timesteps. Each timestep (delay after cue 
onset) is associated with an adaptable weight. At trial n, r(r) becomes 
active because of the delivery of reward (juice). C, A simple interpretation 
of the temporal representation shown in B, the onset of the sensory cue 
activates distinct sets of neurons at timestep I, which results in a second 
group being activated at timestep 2, and so on. In this manner, different 
synapses and cells are devoted to different timesteps; however, at any 
given timestep, the active cells/synapses represent green light from the 
point of view of the rest of the brain. 

tion of the model also makes a direct connection with established 
computational theory. In particular, our formulation of the learn- 
ing rule comes from the method of temporal differences (Sutton 
and Barto, 1987, 1990; Sutton, 1988). In temporal difference 
methods, the goal of learning is to make V(t) anticipate the sum 
of future rewards T(U), u 2 t by encouraging predictions at 
successive time steps to be consistent. S(t) in Equation 3 is a 
measure of the inconsistency, and the weight changes specified by 
Equation 4 encourage it to decrease. Further details of the rule 
are discussed in the Appendix. Predictions made by temporal 
difference methods are known to converge correctly under various 
conditions (Sutton, 1988), and they also lie at the heart of a 

We assume that the presentation of a sensory cue, say a light, 
initiates an exuberance of temporal representations and that the 
learning rule in Equation 4 selects the ones that are appropriate 
(Fig. 4B). We use the simplest form of such a representation: 
dividing the time interval after the stimulus into time steps and 
having a different component of x dedicated to each time step. 
This form of temporal representation is what Sutton and Barto 
(1990) call a complete serial-compound stimulus and is related to 
spectral timing model of Grossberg and Schmajuk (1989) in which 
a learning rule selects from a spectrum of timed processes. We do 
not propose a biological model of such a stimulus representation; 
however, in Figure 4C we illustrate one possible substrate. 

Changing signal-to-noise ratios: translating prediction 
errors into decisions 
In the absence of rewarding or reinforcing input, i.e., r(t) = 0, the 
fluctuating output of P reflects an ongoing comparison of V(t - 1) 
and V(t). Because these two quantities are predictions of summed 
@ture rewards, the difference between them indicates whether the 
future is expected to be more or less rewarding. Hence, through 
the weights that define V(t), the output of P [S(t)] ranks transi- 
tions between patterns of activity in the cortex. In this manner, the 
weights w(i, t) associated with the active cortical domainsx(i, t) act 
through the output of P to tag these transitions as “better than 
expected” [S(t) > 0] or “worse than expected” [S(t) < 01. In our 
model of bumble-bee foraging based on the same theoretical 
framework, S(t) was used in a similar manner to determine 
whether a bee should randomly reorient (Montague et al., 1995). 
Below, we use the same prediction error signal S(t) to control 
behavior in a simple decision-making task. The same signal can be 
used to teach a system to take actions that are followed by 
rewards. This direct use of reinforcement signals in action choice 
may be a general phenomenon in a number of biological systems 
(Doya and Sejnowski, 1995). 

RESULTS 

Comparison of theory to physiological data 
Training the model: learning with mistakes 

Figure 5A shows the results of applying the model to the task 
given in Ljungberg et al. (1992) which is also similar to the spatial 
choice task in Figure 2. We address just the activity of the 
dopaminergic neurons that they recorded and do not address the 
process by which the monkey learns which actions to take to get 
reward. A light is presented at time t = 41, and a reward r(t) = 1 
at timestep t = 54. As described above, the light is represented by 
a 20 component vector x(I, t), where the activity of x(i, t) for 
timestep k is 1 if t = k and 0 otherwise. Figure 54 shows S(t - 1) 
(output of neuron P) for three trials: before training, during 
training, and after significant training. Figure 5B shows S(t - 1) 
for each timestep across the entire course of the experiment. In 
early trials (toward the left of Fig. 5B), the prediction error S(t) is 
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Figure 5. Model for mesolimbic dopamine cell activity during monkey 
conditioning.d, Plot of 8(t) (output of neuron P) over time for three trials 
during training. Each learning trial consisted of 120 timesteps. The model 
is presented with a single sensory cue at timestep 41 and reward [r(t) = l] 
at timestep 54. Initially (trial l), the output of P [s(t)] is large at the time 
that the reward is delivered (t = 54). During an intermediate trial (trial 
30) the sensory cue is presented as before but the reward is withheld. At 
later trials (trial 50), the output of P [8(t)] is large after the onset of the 
sensory cue and is near 0 at the delivery of reward. B, Entire time course 
of model responses. Sensory cue and reward delivery occur as in A, but 
training begins at trial 10. Over the course of -60 trials, the largest change 
in the output of P shifts from timestep 54 to timestep 41. During inter- 
mediate trials, the prediction error is spread out through time so that, in 
the presence of some threshold for changes in firing rate, one would not 
necessarily expect to see an increase in firing rate moving back through 
time. Rather, in the case that we explore, the most noticeable firing rate 
changes in the mesolimbic dopamine neurons would appear initially at the 
presentation of reward and, after a number of trials, would appear locked 
to the presentation of the sensory stimulus. To simulate mistakes (wrong 
lever pressed), reward was withheld every 15 trials, resulting in a negative 
fluctuation in 8(t) (e.g., trial 30 illustrated inA). This negative fluctuation 
would be seen as a sharp decrease in the firing rate of the dopamine 
neuron. This means that both during and after learning, mistakes would be 
attended by decreases in firing at the time that the reward would have 
been delivered. This effect has been observed during learning (see Fig. 3). 
C, Extinction of response to the sensory cue. Model is trained as in A 

concentrated at the time steps when the reward is present. By the 
final trial, theprediction error is concentrated at the step when the 
light first comes on. Every 1.5 timesteps, reward was withheld, 
resulting in a large negative deflection in 8(t) that would be seen 
in the real experiment as a cessation in spike production. 

Extinction of response to the sensory cue 
Model is trained as in Figure SA except that reward is always 
delivered until trial 70, after which reward is no longer delivered. 
As before, there is a negative fluctuation in 8(t) at the time that 
the reward would have been delivered and by about trial 120, the 
response to the onset of the sensory cue has disappeared (learning 
rate in all panels of Fig. 5: 7 = 0.3). 

Instructed spatial task and delayed spatial task: the influence 
of temporal consistency 
Figure 6 shows the training of the model in the presence of two 
predictive sensory cues. The initial sensory cue is presented at 
timestep 60 followed by presentation of the second sensory cue. In 
Figure ti, this second cue occurs at a delay randomly varying 
from 9 to 11 timesteps. In Figure 6B, the second cue occurs exactly 
10 timesteps after the initial cue. In both cases, the reward is 
presented at timestep 80 and lasts for 1 timestep. In Figure 6A, the 
model learns the magnitude and time of onset of the reward; 
however, it only partially discounts the onset of the second sensory 
cue. Note that throughout training, there remain fluctuations in 
s(t) near the time of the onset of the second cue. This result 
captures the data in Figure 2C. This result changes if the second 
cue occurs at a consistent time after the initial cue. In this latter 
case, the model learns to discount the future onset of the second 
sensory cue and the reward consistent with the data in Figure 2B. 
This example suggests that the difference in dopamine neuron 
response in Figure 2B and C, depends on the consistency of the 
time of onset of the trigger light relative to the instruction light. 

Influence of the temporal representation: response of the model 
in a noisy environment 
One critical issue is the influence of other sensory cues that do not 
consistently predict the delivery of reward along r(t). We show in 
Figure 7 the influence of the chosen temporal representation for 
sensory cues. In this figure, a sensory cue comes on and off 
(timestep 60) and its representation through time persists for 60 
timesteps. The weights for each time step are initially randomized 
and are updated as before on each presentation of the cue (trial). 
Figure 7A shows s(t), and Figure 7B shows the weights. The 
fluctuations in 8(t) rapidly decay to 0 except on the initial timestep 
where the fluctuation in 8(t) persists (>lOO trials). Such persis- 
tence is attributable to the influence of the boundary conditions of 
the sensory representation as illustrated in Figure 7B. 

The point of this example is to show how stimuli unrelated to 
reward delivery could influence the training of the model. If the 
temporal representation of a sensory stimulus does not overlap 
the period between the actual sensory predictor and the reward, 
then the learning rule averages away any initial weights because of 
the influence of the boundary of the representation. When these 
other stimuli overlap the period between the actual predictor and 

t 

except that reward is always delivered until trial 70, after which reward is 
no longer delivered. As before, there is a negative fluctuation in 6(t) at the 
time that the reward would have been delivered, and by about trial 120, 
the response to the onset of the sensory cue has disappeared (learning rate 
in all panels: n = 0.3). 
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Figure 6. Response of model to two consistent predictors: instructed 
spatial task and delayed spatial task. A and B show plot of s(t) (output of 
P) versus timestep and trial. A, Two sensory cues are presented followed 
by reward [r(t) = 1) at timestep 80. The first sensory cue is presented at 
timestep 60, and the second sensory cue is presented at a random delay 
varying from 9 to 11 timesteps later (t = 69-71). As before, s(t) is large 
on the initial delivery of reward at t = 80. The model does not distinguish 
between fluctuations in s(t) attributable to other sensory cues and reward- 
ing input; hence, the weights develop so as to discount both. However, in 
this case, the second sensory cue does not occur at a predictable time so 
that s(t) fluctuates near timestep 70 from trial to trial. After training, a 
histogram of the activity of P would show an increased activity near trial 
70 that was more spread out through time than the response of P to the 
initial sensory cue. This example is analogous to the spatial delayed task. 
B, The model was trained as in A except that the second sensory cue was 
presented at exactly 10 timesteps after the first sensory cue. The weights 
develop so as to discount the occurrence of the second sensory cue and the 
reward delivery at t = 80. This example is analogous to the instructed 
spatial task. C, s(t) (Delta in panel) from A shown for trials 500 (line with 
diamonds) and 501 (solid line). The positive fluctuations would tend to 
cause spikes and, therefore, contribute to a peristimulus histogram, 
whereas the negative fluctuations would be ignored if baseline firing rates 
were sufficiently low. The inconsistency of the relative time of presentation 
of the second sensory cue causes fluctuations s(t) spread through time as 
shown (learning rate n = 0.05). 

A delta 

timestep 

B weights 

0*9t, , 

0.6 

0.3 

0 

60 

timestep 

Figure 7. Response of model to unpredictive cues. Sensory cue comes on 
at timestep 60, goes off at timestep 61, and the representation of this event 
lasts for 59 succeeding timesteps. The initial weights for each time step are 
drawn from a uniform distribution on the interval (0,l) and are updated 
according to Equation 13. A, s(t) as a function of time and presentation 
(trial). Except for the initial timestep when the sensory stimulus is pre- 
sented, the fluctuations in 8(t) rapidly decay to 0. B, Weights associated 
with each timestep are shown as a function of the presentation (trial). The 
persistence of positive S(t) at the onset of the stimulus is caused by the 
boundary conditions of the sensory representation that we use the learning 
rule in Equation 13. There are three effects illustrated in this example. (1) 
S(t) is always negative just after the last timestep associated with a positive 
weight; therefore, the weights tend toward 0 beginning at the last timestep. 
This is seen as a ridge beginning at timestep 120 on trial 0 and progressing 
to timestep 61 around trial 120. (2) The learning rule implements a 
smoothness constraint and tends to drive the weights toward a stable 
point-an effect seen most clearly in the intermediate timesteps. (3) The 
weights for the initial timestep stay positive until the succeeding weight is 
driven to 0. This effect accounts for the persistent positive fluctuation in 
s(t) shown in A. 

the reward, they pick up weight changes and influence the value of 
S(t), however, the strong averaging effect shown in the Figure 
quickly removes these changes during epochs when there is no 
overlap. 

Physiological predictions 

Figure 8 shows experimental consequences for the activity of the 
dopaminergic neurons in cases that have yet to be tested. In this 
example, a sensory cue consistently precedes the delivery of re- 
ward by 50 timesteps and the model trains as before. At trial 200, 
the time of reward delivery is reduced to 2.5 timesteps, i.e., reward 
delivery is twice as soon as would be expected. This change has 
three consequences: (1) in the first anomalous trial (200), S(t) is 
positive at the new time of the reward; (2) S(t) is negative at the old 
time; and (3) information that no reward is delivered at the 
original time takes longer than information about the new reward 
time to propagate back and affect the initial s(t) in each trial. This 
latter consequence results in the transient elevation in the 



www.manaraa.com

Montague et al. l Prediction through Fluctuating Dopamine Delivery J. Neurosci., March 1, 1996, 16(5):1936-1947 1943 

Figure 8. Physiological predictions. This figure shows some predictions of 
the model that depend on the complete serial-compound stimulus that we 
used for our temporal representation (see Fig. 4). The learning rate in 
both panels is 7) = 0.3. A, The model is trained as before with a sensory 
stimulus occurring at timestep 150 and the reward delivery 50 timesteps 
later at timestep 200. After trial 200, the reward is delivered 25 timesteps 
after the sensory stimulus instead of 50. At this switch of reward delivery, 
the model predicts that the dopamine cell would fire at the new delivery 
time of reward and would cease firing at the time that the reward had been 
delivered previously. The response to the sensory cue grows to twice its 
initial value and then decays back to its initial value with repeated 
presentations. This effect might not be noticed in practice because, for a 
tied learning rate, it is proportional to the time difference between the old 
and new reward delivery times. This is illustrated in B. B, Model is trained 
exactly as in A; however, there are only 7 timesteps between the old and 
new reward delivery rather than 25. 

stimulus-locked activity of the neurons seen between trials 250 
and 350 in Figure &I. Predictions 2 and 3 depend crucially on 
precise details of the representation of the stimulus over time 
(Fig. 8B). Prediction 1 should not depend on precise details of the 
stimulus representation. 

Decision-making: predictions for human 
choice behavior 
The preceding examples show how the model propagates infor- 
mation through time and how highly convergent descending con- 
nections can generate expectations about future rewards and 
predictions. In the above examples, the predictors of reward were 
extremely consistent and exhibited no variability in their temporal 
relation to the delivery of information about reward. We now ask 
how the model could use information about predictions of reward 
to bias actions. We also consider what happens if the delivery of 
reward is variable and depends on the history of the action 
choices. We show that under certain circumstances of reward 
delivery it would be difficult for an animal to maximize long-term 
reward delivery under our model of the influence of the diffuse 
dopamine systems on both synaptic plasticity and signal-to-noise 
ratios. 

Figure 9. Card choice experiment. A card choice experiment involving 
two decks of cards was given to the network. The network made its card 
selections as follows: random transitions between decks (labeled A and B) 
were made to induce fluctuations in s(t). Acting through P,, the proba- 
bility that the current deck is selected, the fluctuations in 6(t) acted to bias 
the choice of decks. After each selection of a card, a reward was delivered 
along r(i) and weights (w,, wB) associated with each deck were updated 
according to Equation 8. The reward received at each card choice was a 
function of the fraction of the preceding 40 choices in which deck A was 
selected (reward functions shown in Fig. 8). 

Card choice experimePzt 
Figure 9 illustrates a card choice task given to the networks and 
humans (Egelman et al., 1995). The task is to select a card from 
one of the two decks of cards after which a reward is delivered 
along r(t). As specified by the reward functions in Figure 10, the 
reward from both decks changes as a function of the percentage of 
choices from deck A. Notice that the reward functions cross at one 
point. To the right of this crossing, the reward function for deck B 
continues to grow and the reward function for deck A stays 
approximately the same. By design, it is suboptimal to choose 
cards in the ratio near the crossing point of the reward functions. 
The simple first-order nature of the model shows that it will 
pursue a hill-climbing strategy that will tend to get stuck at the 
crossing point. 

The model and its behavior 
The model is illustrated in Figure 9. The output of P [S(t)] is again 
proportional to the sum of its inputs, so in this case we have: 

S(t) = r(t) + V(t) - V(t - l), 

V(t) = x,4 (th‘4(t) + X&)WLa), 

(5) 

(6) 

where r(t) is 0 before a card is actually chosen. The selection of a 
deck was determined by Equation 7, where P, is the probability of 
selecting the current deck. Fluctuations in S were induced by 
allowing random transitions between the two alternatives. The 
model randomly chose one deck as a starting point and “looked 
back and forth” between decks, the fluctuations in S(t) assigned a 
value to the transitions between choices, and P, determined the 
probability that a given deck was selected after a transition. 
Weights (w, and wg) determined the sign and magnitude of 
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Figure 10. Reward functions and network performance. Reward func- 
tions for deck A and deck B as a function of the fraction of the last 40 
cards chosen that were from deck A. For the network simulations, initial 
starting points were varied from 0.0 to 0.9 in steps of 0.1, and learning 
rates q were varied from 0.05 to 0.95 in steps of 0.05. m was varied over 
a range from 5 to 15. b was varied over a range from 0.0 to 1.0. For all of 
these conditions, the mean fraction of selections from deck A settled to 
values that fell between the vertical lines after -200 iterations. Phase plots 
of the evolution of the weights W, and wg reveal that after 100 iterations, 
the weights settle into a stable basin of attraction. 

fluctuations in S(t), and thus influenced the choices between the 
decks: 

1 
” = 1 + exp(ms(t) + b)’ (7) 

Permitting S(t) to control noise levels at active target neurons 
allows the sign and magnitude of S(t) to choose whether to 
“permit the action” or “wash it out” with increased noise levels. 
We do not attempt to specify the detailed dynamics of various 
elements of the model as a particular deck is chosen. Hence, some 
arbitrariness results in choosing the form of S(t) during these 
events and we opt for a simplified version with y = 0, i.e., S(t) = 
r(t) - V(t - l), where v(t - 1) = x(i, t - l)w(i, t - 1) with i 
indexing the selected deck. Justification for such simplification of S(t) 
has been given in previous work (Montague et al., 1995). Using this 
form of S(t), the weights associated with each deck were updated at 
each reward encounter (card choice) by Equation 8: 

Aw(t) = TX(t)?+(t). (8) 

The results for the network are shown as vertical lines showing the 
range of the mean fraction of deck A selections for all learning 
rates and initial starting positions. The parameters that determine 
the form of P, (m and b) were varied over the ranges: m(0.1,.5.0), 
b(0.0,E.O). The main influence of these parameters was to control 
the size of the basin of attraction for the sensory weights (NJ,, wg) 
and of course the dynamics of the approach to this basin. In these 
ranges, the network still converged on the range of 0.30 to 0.41 for 
the fraction of selections from deck A. In preliminary experi- 
ments, human subjects performed similar to the networks and 

tended to stick near the crossing points of the reward functions 
(Egelman et al., 1995). 

DISCUSSION 
We have proposed a particular relationship between the causes 
and effects of mesencephalic dopaminergic output on learning 
and behavioral control. The theory that we present accounts for a 
wide range of results in physiological recordings from dopamine 
neurons in behaving primates (Figs. 5, 6) and makes testable 
physiological predictions for future experiments (Fig. 8). The 
theory also makes strong predictions for a restricted class of 
decision-behaviors that is consistent with preliminary experiments 
in humans (Egelman et al., 1995). 

Based on the success of these results, we postulate the follow- 
ing: the fluctuating delivery of dopamine from the VTA to cortical 
and subcortical target structures in part delivers information about 
prediction errors between the expected amount of reward and the 
actual reward. Under such a postulate, increases in dopamine 
release indicate that the current state is better than expected, 
decreases indicate that the current state is worse than expected, 
and the predictions (expectations) are represented in the pattern 
of weights that develop (see also Wickens and Kotter, 1995; Houk 
et al., 1995). In cases in which one sensory cue predicts another 
sensory cue as well as reward, the model develops weights that 
predict the time and magnitude of both future events, i.e., the 
model does not distinguish between stimulus-stimulus prediction 
and stimulus-reward prediction. 

We have been very specific about how the dopamine neuron 
responses develop and the kind of information carried by fluctu- 
ations in their output (Fig. 4); however, we have not been specific 
about anatomical loci where weight changes may be stored. Ljung- 
berg et al. (1992) and Schultz et al. (1993) report no difference 
between the dopaminergic cells in the VTA and those in the 
substantia nigra (although the frequencies are different). Given 
the involvement of the dorsal striatum in motor control, it is likely 
that there will be cells in the substantia nigra that are broadcasting 
S(t) to influence the choice of actions. In addition to the nucleus 
accumbens (Koob and Bloom, 1988), the amygdala is a potential 
site for the weight changes that occur in the model (Gallagher and 
Holland, 1994). 

Self-stimulation and the influence of agents affecting 
dopamine action 
Artificial conditions induced by electrical stimulation or pharma- 
cological agents that perturb the actions of dopamine offer insight 
into the impact of dopamine systems on behavior. Electrodes that 
artificially stimulate neuron P would generate and distribute a 
large positive prediction error to target structures innervated by P. 
If an animal controlled increases in the firing rate of Y through a 
bar press, then the neural representation of the bar press would 
act as a predictor of future reward through dopamine release at 
targets. The learning rule would change the weights so that they 
predict the increase in the activity of P due to the initial rate of bar 
pressing. Through such learning, the initial change in the activity 
of P and attendant changes in dopamine release would then 
decrease for a given rate or pattern of bar pressing. Furthermore, 
if the output of P also influenced the learning of actions as we 
have suggested, then electrical stimulation would lead to the 
animal learning to press the bar more readily or more often. 

Agents like cocaine that prolong the action of dopamine at 
target structures could have a number of effects on the model. 
One possible model of their action would be an increase in the 
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effective 6(t). A set of sensory cues associated with administration 
of such compounds would predict an effect of dopamine release 
attributable partially to the prolongation of the action of dopa- 
mine by cocaine, i.e., a fictitiously large prediction error. After 
training the model under these conditions, the sensory cues that 
predict the prolonged action of dopamine no longer predict the 
correct amount of dopamine in the absence of cocaine. In partic- 
ular, presentation of these cues without cocaine administration 
cause a decrease in the firing of P and an attendant decrease in the 
current ongoing dopamine delivery, i.e., cues associated with drug 
administration that are not paired with the drug cause actual 
dopamine release to drop below the current baseline release. 
Other drugs of addiction that act partly through the dopaminergic 
system may also cause similar behavior on withdrawal. 

Indeed, there is evidence that the dopamine concentration in 
the nucleus accumbens decreases after the cessation of chronic 
treatment with drugs of addiction such as morphine, ethanol, and 
cocaine (Acquas et al., 1991; Parsons et al., 1991; Rossetti et al., 
1992; Diana et al., 1993). Unfortunately, there is contradictory 
evidence as to whether the dopamine concentration in the accum- 
bens also decreases after withdrawal from amphetamines (Ros- 
setti et al., 1992; Crippens and Robinson, 1994), although this 
would be expected from the model. The model suggests that, 
rather than reflecting direct pharmacological effects, physiological 
and behavioral effects that attend drug taking or drug removal 
may relate in a complicated manner to learning effects that are 
slow to reverse or to accrue. 

Representing information without tonic firing 
The data from monkey conditioning were one of the main con- 
straints on our theory at the level of choosing a learning rule 
consistent with physiological findings. Ljungberg et al., (1992) 
recorded firing in dopaminergic areas during a reaction-time 
conditioning task and showed an apparent transfer in activity as a 
consequence of learning. In early trials, increased firing rates were 
locked to the delivery of a juice reward. Once the monkey had 
learned that a light stimulus reliably predicted the reward, the 
increased firing was locked to the presentation of the light. In a 
similar delayed response task, Schultz et al., (1993) noted that 
there was no sustained activity in the dopaminergic neurons 
during the time between the stimulus and the ultimate reward and 
concluded that this lack of firing “suggests that dopamine neurons 
do not encode representational processes, such as. . . expectation 
of external stimuli or reward.” Under our theory, the lack of 
sustained firing is to be expected, and other temporal difference- 
based conditioning theories would make similar predictions about 
the transfer of firing (Moore et al., 1986). Theories that are not 
based on these principles, such as the attention-based account of 
Grossberg and Levine (1988) would have to explain these results 
in a different manner. The important point is that there may be 
many ways to represent information during delay periods that are 
not reflected simply as tonic firing. 

Action choice in a simple decision-making task 
The binary choice experiment has long been used to test how 
various aspects of reward schedules influence the choices made by 
animal or human subjects (see Bush and Mosteller, 195.5; Gallis- 
tel, 1990). In experiments in which an animal is given multiple 
behavioral alternatives each of which yields rewards of various 
sizes or strengths, the animal tends to adjust its sampling of 
alternatives according to the relative rewards obtained from each. 
In contrast to these findings, it has been suggested that humans 

tend to maximize their returns in similar tasks and that matching 
may be restricted to less intelligent creatures. This latter view has 
been challenged by Herrnstein (1991) and others. The reward 
functions used in the card choice experiment are adaptations of 
similar reward functions used by Herrnstein (1991) in a task using 
human subjects (see also Herrnstein, 1961). 

Using our simple “bottom-up” neural model of the potential 
influence of dopamine delivery on target neurons, we observed 
that the model behaved so as to match the relative rates of return 
from the two decks independent of starting position, learning rate, 
and noise level in the decision function P,,. The capacity of the 
model to demonstrate stable matching behavior depends on the 
fluctuations in s(t) so that reductions in these fluctuations would 
influence expected behaviors. There are two ways to reduce the 
influence of s(t) on the behavior of the model: (1) decrease the 
magnitude of the fluctuations in s(t) that would slow down learn- 
ing, and (2) decrease the effect of the transmitter at the target. 
Case 2 is equivalent to decreasing the magnitude of positive 
fluctuations in 8(t) and leaving the magnitude of negative fluctu- 
ations unchanged. In addition, a blunting of the influence of s(t) 
would also be expected from a lesion of the VTA (see Wise, 
1982); however, a complete lesion of the VTA appears to block 
reward-dependent learning completely, thus preventing solid con- 
clusions about its significance. 

To maximize long-term returns, a more rational agent than our 
network (say a human) should choose cards so that the percentage 
from deck A fluctuates around 0.8. In preliminary experiments, 
such a strategy is discovered only by a minority of the participants, 
and most tend to choose cards to match the relative rate of return 
from each deck (Egelman et al., 1995). Many explanations cast at 
a variety of levels have been offered to explain such matching 
behavior, and various strategies can be formulated to achieve 
optimal outcomes (von Neumann and Morgenstern, 1947; Bush 
and Mosteller, 1955; Lute and Raiffa, 1957). We of course do not 
attempt to improve or amend such efforts here. We note, instead, 
that our proposed model provides one possible bottom-up de- 
scription for how diffuse systems could establish constraints that 
favored event matching while not excluding other more compli- 
cated reward-seeking strategies. This may explain why it is difficult 
for animals to maximize long-term rewards and why under appro- 
priate circumstances they appear to be risk-averse (Lute and 
Raiffa, 1957; Harder and Real, 1987; Real, 1991). 

Our theoretical framework shows how dopamine systems 
could respond to appropriate statistical structure in a task to 
influence behavior. Other diffuse systems also send projections 
down the spinal cord or to other systems that project down the 
spinal cord; therefore, the prediction error signals in our theory 
may be attended by more peripheral responses such as skin 
conductance changes. In this manner, the framework that we 
have presented may provide a starting point for explaining 
observations of skin conductance responses during various 
learning, recognition, and decision-making task (Tranel and 
Damasio, 1985; Bechara et al., 1994). It will be interesting to 
test human subjects on this decision-making task and compare 
their behavior to those of the model. 

APPENDIX 
At time t, an animal experiences stimuli that are represented by 
components of a vector.?(t) with each component i dedicated to a 
separate stimulus or stimulus feature. The animal can also receive 
a scalar reward r(t). Under temporal difference methods, the 
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computational goal of learning is to use the stimuli T(t) to predict 
a measure of the discounted sum of future rewards V(t): 

V(t) = &I-f-%(s). (9) 
SX 

0 5 y 5 1 is called a discount factor that makes rewards that 
arrive sooner more important than ones that are delayed. This 
formulation, i.e., predicting the sum of future rewards, is an 
important advance over static conditioning models such as the 
Rescorla-Wagner rule (Rescorla and Wagner, 1972). An assump- 
tion of temporal difference methods is that the environment is 
Markovian: future rewards do not depend on past reward except 
through the current state x(t). Hence, we denote V(t) as V(z). 
Given these assumptions, V(z) satisfies the recursive relationship: 

Egelman DM, Person C, Montague PR (1995) A predictive model for 
diffuse systems matches human choices in a simple decision-making 
task. Sot Neurosci Abstr 21:2087. 

Fibiger HC, Phillips AG (1986) Reward, motivation, cognition: psycholo- 
biology of mesotelencephalic dopamine systems. In: Handbook of phys- 
iology. The nervous system. Intrinsic regulatory systems of the brain, 
Vo14, pp 647-675. Bethesda: American-Physiological Society. 

Freeman AS, Bunney BS (1987) Activity of A9 and A10 dopaminergic 
neurons in unrestrained rats: further characterization and effects of 
cholecystokinin. Brain Res 405:46-55. 

Gallagher M, Holland PC (1994) The amygdala complex: multiple roles 
in associative learning and attention. Proc Nat1 Acad Sci USA 
91:11771-11776. 

V(?qt - 1)) = r(t) + yV(,qt)) (10) 
Harder LD, Real LA (1987) Why are bumble bees risk averse? Ecology 

68:1104-1108. 

Gallistel CR (1990) The organization of learning. Cambridge: MIT. 
Grossberg S, Levine DS (1987) Neural dynamics of attentionally modu- 

lated Pavlovian conditioning: blocking, interstimulus interval, and sec- 
ondary reinforcement. Appl Optics 26:5015-5030. 

Grossberg S, Schmajuk NA (1989) Neural dynamics of adaptive timing 
and temporal discrimination during associative learning. Neural Net- 
works 2:79-102. 

or 

S(t) = r(t) + -q(,qt)) - v(qt - l)), (11) 
Herrnstein RJ (1961) Relative and absolute strength of response as a 

function of frequency of reinforcement. J Exp Anal Behav 4:267-272. 

where 8(t) is called the temporal difference error. In this paper, 
Herrnstein RJ (1‘991) ‘Experiments on stable suboptimality in individual 

behavior. Am Econ Rev Paoers Proc 83:360-364. _ _ 
actual estimates of the predictions p@(t)) are constructed as: 

P(.?(t)) = Z(t) * i;(t). (12) 

Weight changes are specified as 

Houk JC, Adams JL, Barto AG (1995) A model of how the basal ganglia 
generate and use neural signals that predict reinforcement. In: Models 
of information processing in the basal ganglia (Houk JC, Davis JL, 
Beiser DG, eds). Cambridge: MIT. 

Kalman RE (1960) A new approach to linear filtering and prediction 
problems. J Basic Eng Tram ASME 82:35-45. 

w(i, t - l),,, = w(i, t - l)prev + qx(i, t - 1)8(t), (13) Klbpf AH (1982) The hedonistic neuron. New York: Taylor and Francis. 
Koob GF. Bloom FE f 1988) Cellular and molecular mechanisms of drun 

where w(i, t) is the weight of timestep t for stimulus i in the 

predict&s. The learning rule increases weights that produie 
positive fluctuations in 6(t) and decreases weights that produce 

estimate p(z). 11 is the learning rate. s(t) takes on both positive 

negative fluctuations in s(t), i.e., they change so as to make s(t) 

and negative values corresponding to too small and too large 

small. 
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